Copied to
clipboard

G = C3310M4(2)  order 432 = 24·33

6th semidirect product of C33 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial

Aliases: C3310M4(2), C12.94S32, C324C816S3, (C3×C12).169D6, C6.18(S3×Dic3), C328(C8⋊S3), C3⋊Dic3.6Dic3, C32(D6.Dic3), C32(C12.31D6), C6.19(C6.D6), C4.7(C324D6), C326(C4.Dic3), (C32×C12).71C22, (C4×C3⋊S3).8S3, (C6×C3⋊S3).8C4, (C12×C3⋊S3).2C2, (C3×C6).54(C4×S3), (C2×C3⋊S3).6Dic3, (C3×C3⋊Dic3).6C4, C2.3(C339(C2×C4)), (C3×C324C8)⋊14C2, (C32×C6).45(C2×C4), (C3×C6).41(C2×Dic3), SmallGroup(432,456)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C3310M4(2)
C1C3C32C33C32×C6C32×C12C12×C3⋊S3 — C3310M4(2)
C33C32×C6 — C3310M4(2)
C1C4

Generators and relations for C3310M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d5 >

Subgroups: 456 in 118 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C8⋊S3, C4.Dic3, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, D6.Dic3, C12.31D6, C3×C324C8, C12×C3⋊S3, C3310M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, M4(2), C4×S3, C2×Dic3, S32, C8⋊S3, C4.Dic3, S3×Dic3, C6.D6, C324D6, D6.Dic3, C12.31D6, C339(C2×C4), C3310M4(2)

Smallest permutation representation of C3310M4(2)
On 48 points
Generators in S48
(1 38 45)(2 39 46)(3 40 47)(4 33 48)(5 34 41)(6 35 42)(7 36 43)(8 37 44)(9 23 28)(10 24 29)(11 17 30)(12 18 31)(13 19 32)(14 20 25)(15 21 26)(16 22 27)
(1 38 45)(2 46 39)(3 40 47)(4 48 33)(5 34 41)(6 42 35)(7 36 43)(8 44 37)(9 23 28)(10 29 24)(11 17 30)(12 31 18)(13 19 32)(14 25 20)(15 21 26)(16 27 22)
(1 45 38)(2 39 46)(3 47 40)(4 33 48)(5 41 34)(6 35 42)(7 43 36)(8 37 44)(9 23 28)(10 29 24)(11 17 30)(12 31 18)(13 19 32)(14 25 20)(15 21 26)(16 27 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 35)(10 40)(11 37)(12 34)(13 39)(14 36)(15 33)(16 38)(25 43)(26 48)(27 45)(28 42)(29 47)(30 44)(31 41)(32 46)

G:=sub<Sym(48)| (1,38,45)(2,39,46)(3,40,47)(4,33,48)(5,34,41)(6,35,42)(7,36,43)(8,37,44)(9,23,28)(10,24,29)(11,17,30)(12,18,31)(13,19,32)(14,20,25)(15,21,26)(16,22,27), (1,38,45)(2,46,39)(3,40,47)(4,48,33)(5,34,41)(6,42,35)(7,36,43)(8,44,37)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46)>;

G:=Group( (1,38,45)(2,39,46)(3,40,47)(4,33,48)(5,34,41)(6,35,42)(7,36,43)(8,37,44)(9,23,28)(10,24,29)(11,17,30)(12,18,31)(13,19,32)(14,20,25)(15,21,26)(16,22,27), (1,38,45)(2,46,39)(3,40,47)(4,48,33)(5,34,41)(6,42,35)(7,36,43)(8,44,37)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46) );

G=PermutationGroup([[(1,38,45),(2,39,46),(3,40,47),(4,33,48),(5,34,41),(6,35,42),(7,36,43),(8,37,44),(9,23,28),(10,24,29),(11,17,30),(12,18,31),(13,19,32),(14,20,25),(15,21,26),(16,22,27)], [(1,38,45),(2,46,39),(3,40,47),(4,48,33),(5,34,41),(6,42,35),(7,36,43),(8,44,37),(9,23,28),(10,29,24),(11,17,30),(12,31,18),(13,19,32),(14,25,20),(15,21,26),(16,27,22)], [(1,45,38),(2,39,46),(3,47,40),(4,33,48),(5,41,34),(6,35,42),(7,43,36),(8,37,44),(9,23,28),(10,29,24),(11,17,30),(12,31,18),(13,19,32),(14,25,20),(15,21,26),(16,27,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,35),(10,40),(11,37),(12,34),(13,39),(14,36),(15,33),(16,38),(25,43),(26,48),(27,45),(28,42),(29,47),(30,44),(31,41),(32,46)]])

54 conjugacy classes

class 1 2A2B3A3B3C3D···3H4A4B4C6A6B6C6D···6H6I6J8A8B8C8D12A···12F12G···12P12Q12R24A···24H
order1223333···34446666···666888812···1212···12121224···24
size11182224···411182224···41818181818182···24···4181818···18

54 irreducible representations

dim1111122222222244444444
type+++++-+-+-+
imageC1C2C2C4C4S3S3Dic3D6Dic3M4(2)C4×S3C8⋊S3C4.Dic3S32S3×Dic3C6.D6C324D6D6.Dic3C12.31D6C339(C2×C4)C3310M4(2)
kernelC3310M4(2)C3×C324C8C12×C3⋊S3C3×C3⋊Dic3C6×C3⋊S3C324C8C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C33C3×C6C32C32C12C6C6C4C3C3C2C1
# reps1212221131248432124224

Matrix representation of C3310M4(2) in GL6(𝔽73)

100000
010000
0007200
0017200
000010
000001
,
0720000
1720000
001000
000100
000010
000001
,
100000
010000
001000
000100
00007272
000010
,
0720000
7200000
0072000
0007200
0000146
00004572
,
7200000
0720000
000100
001000
00007160
0000622

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,45,0,0,0,0,46,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,71,62,0,0,0,0,60,2] >;

C3310M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes_{10}M_4(2)
% in TeX

G:=Group("C3^3:10M4(2)");
// GroupNames label

G:=SmallGroup(432,456);
// by ID

G=gap.SmallGroup(432,456);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations

׿
×
𝔽